Temperature resistant optimal ratchet transport.
نویسندگان
چکیده
Stable periodic structures containing optimal ratchet transport, recently found in the parameter space dissipation versus ratchet parameter by [A. Celestino et al. Phys. Rev. Lett. 106, 234101 (2011)], are shown to be resistant to reasonable temperatures, reinforcing the expectation that they are essential to explain the optimal ratchet transport in nature. Critical temperatures for their destruction, valid from the overdamping to close to the conservative limits, are obtained numerically and shown to be connected to the current efficiency, given here analytically. A region where thermal activation of the rachet current takes place is also found, and its underlying mechanism is unveiled. Results are demonstrated for a discrete ratchet model and generalized to the Langevin equation with an additional external oscillating force.
منابع مشابه
Ratchet universality in the presence of thermal noise.
We show that directed ratchet transport of a driven overdamped Brownian particle subjected to a spatially periodic and symmetric potential can be reliably controlled by tailoring a biharmonic temporal force, in coherence with the degree-of-symmetry-breaking mechanism. We demonstrate that the effect of finite temperature on the purely deterministic ratchet scenario can be understood as an effect...
متن کاملRatchet transport powered by chiral active particles
We numerically investigate the ratchet transport of mixtures of active and passive particles in a transversal asymmetric channel. A big passive particle is immersed in a 'sea' of active particles. Due to the chirality of active particles, the longitudinal directed transport is induced by the transversal asymmetry. For the active particles, the chirality completely determines the direction of th...
متن کاملThe optimal driving waveform for overdamped, adiabatic rocking ratchets
The optimal driving waveform among a wide class of admissible functions for an overdamped, adiabatic rocking ratchet is shown to be dichotomous. ‘Optimum’ is defined as that which achieves the maximum (or minimum negative) average particle velocity. Implications for the design of ratchets, for example in nanotechnological transport, may follow. The main result is applicable to a general class o...
متن کاملOptimal driving waveform for overdamped, adiabatic rocking ratchets
As a first step in the project of ratchet optimisation, the optimal driving waveform among a wide class of admissible functions for an overdamped, adiabatic rocking ratchet is shown to be dichotomous. ‘Optimum’ is defined as that which achieves the maximum (or minimum negative) average particle velocity. Implications for the design of ratchets, for example in nanotechnological transport, may fo...
متن کاملStochastic transport of interacting particles in periodically driven ratchets.
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 110 11 شماره
صفحات -
تاریخ انتشار 2013